a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

英伟达最新AI技术可更精确识别物体的边界

语义细化的边缘对齐学习(steal)能够将最先进的casenet语义边界预测模型的精度提高4%。更精确地识别物体的边界可以应用于计算机视觉任务,从图像生成到三维重建到物体检测。
资讯频道文章B

  来自英伟达(Nvidia)、多伦多大学(University of Toronto)和多伦多矢量人工智能研究所(Vector Institute for Artificial Intelligence)的研究人员设计了一种方法,可以更精确地探测和预测物体的起点和终点。这些知识可以改进现有计算机视觉模型的推理,并为未来的模型标记训练数据。

  在研究人员的实验中,语义细化的边缘对齐学习(steal)能够将最先进的casenet语义边界预测模型的精度提高4%。更精确地识别物体的边界可以应用于计算机视觉任务,从图像生成到三维重建到物体检测。

  STEAL可用于改进现有的CNNs或边界检测模型,但研究人员还认为它可以帮助他们更有效地标记或注释计算机视觉模型的数据。为证明这一点,STEAL方法用于改进城市景观,这是2016年首次在计算机视觉和模式识别(CVPR)会议上引入的城市环境数据集。

  在GitHub上,STEAL框架以像素为单位学习和预测对象边缘,研究人员称之为“主动对齐”。“在训练过程中对注释噪声进行明确的推理,以及为网络提供一个从端到端排列不当的标签中学习的分级公式,也有助于产生结果。”

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

资讯是全球知名展览公司百科展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,资讯拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈
Baidu
map