a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

准确率和性能决胜智能视频监控

在以往的视频监控项目中,智能视频分析技术得到越来越多的应用。但是真正成功的应用确非常少,即使在一些相对应用成功的案例中,智能视频分析往往只是作为补充手段,而且以拌线、禁区等简单算法居多,出现这种呼声与实际严重差距的原因,主要总结为两点:准确率和成本...
资讯频道文章B

  安防视频监控从上世纪90年代至今,获得了快速发展。随着IP技术在视频监控领域的大规模应用,视频监控规模从几十路发展到成千上万路。在此背景下,如何有效提高视频监控的应用效率成为视频监控建设的重要问题。因此,智能视频监控成为视频监控建设的发展方向。

  在以往的视频监控项目中,智能视频分析技术得到越来越多的应用。但是真正成功的应用确非常少,即使在一些相对应用成功的案例中,智能视频分析往往只是作为补充手段,而且以拌线、禁区等简单算法居多。例如卡口应用中,也只是作为感应线圈的后备技术,在感应线圈故障的时候采用拌线识别抓拍车牌。

  出现这种呼声与实际严重差距的原因,主要总结为两点:准确率和成本。这两者相互依赖,密不可分。


  就准确率来说,目前智能分析算法的误报率和漏报率显然是无法令人满意的。这主要有几个原因,首先在我看来目前国内很少有真正属于视频监控自身的视频分析算法。目前使用的大部分算法都是按照实验室单纯环境总结图像规律而来的。然而安防视频监控主要是面向保护人和财产的,所以视频来源主要是路口、广场、建筑物出入口、通道等相对复杂的环境。这些环境往往图像变化率大,受灯光环境干扰多。以人脸识别为例,目前的主流算法对人脸图像有非常严格的要求,取景各个角度、距离、瞳孔之间的像素都要在一个很小的范围内,反之则无法识别。

  怎么解决准确率的问题,关键是样本,智能分析算法的本质是比对,和样本的比对。由于视频监控的环境复杂性,导致很难得到具有统一规律的样本。不同应用场景,具有不同的样本规则。所以要解决准确率,智能分析算法就要具备自我学习,样本自我采集的能力。在不同的场景中,智能分析出现误报漏报,操作员对智能分析服务器反馈误报漏报数据,搜集特殊样本,从而帮助智能分析服务器在以后的相似场景下,能计算准确分析结果。

  另外阻碍智能分析发展的就是成本。虽然目前有很多厂商的编码器、摄像机带有简单的智能分析,但是目前大部分相对复杂的智能分析还是以单独服务器分析的方式应用。服务器收取到视频流,还原为YUV、RGB等数据再做样本比对,然后再编码输出。所以一台服务器要解码、分析、再编码,性能成为很大的瓶颈。

  导致这种情况的原因是视频分析算法从九十年代末至今,实际并没有算法上的根本进步,发展的只是运算能力的提高,也就是计算机技术的发展。同样以车牌识别为例,国内大部分厂商还是在别人的算法基础上不停的优化。在基础没有得到优化的情况下,外围的优化只能说效果了了。

  对于计算性能和算法性能一定的情况下,视频监控产品是否还能有效提高智能分析的效率?答案是一定的,软件架构。我认为,云和格的思想在软件架构的应用可以有效的提高智能分析的效率,降低成本。云是这两年最火的概念,核心思想是共享,格是前几年在网络领域得到发展,核心思想是协同计算。视频智能分析主要是计算图像的变化量和对比度,很多数据要在前端、服务器和客户端反复计算,导致了计算量的浪费,试想如果把前端编码计算变化量共享给智能分析服务器,数据对比的计算量由服务器和多个客户端协同计算,就能大大降低服务器的计算量,从而大大提高智能分析的效率,降低智能分析应用的成本。

  我相信,在有效技术手段下,提高智能分析准确率,降低建设成本,智能视频分析一定能在视频监控领域得到快速的应用和发展。

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

资讯是全球知名展览公司百科展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,资讯拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈
Baidu
map