a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

常用的几种聚焦评价函数

采用图像处理法实现自动调焦的一个关键问题是,在于图像清晰度评价函数的选取。理想的评价函数要求:无偏性、单峰性、能反映离焦的极性、对噪声敏感度低、计算量尽可能小等。离焦图像可以看作由物体和点扩散函数做卷积的结果,这样往往导致图像中高频分量的减少或缺失。这一结果也可理解为,聚焦的图像比离焦图像包含更多的细节和边缘信息。凋焦评价函数通常基于离焦图像与聚焦图像的内容信息的差别等先验知识,因此没有对任何情况都适用的全能方法。
资讯频道文章B

  采用图像处理法实现自动调焦的一个关键问题是,在于图像清晰度评价函数的选取。理想的评价函数要求:无偏性、单峰性、能反映离焦的极性、对噪声敏感度低、计算量尽可能小等。离焦图像可以看作由物体和点扩散函数做卷积的结果,这样往往导致图像中高频分量的减少或缺失。这一结果也可理解为,聚焦的图像比离焦图像包含更多的细节和边缘信息。凋焦评价函数通常基于离焦图像与聚焦图像的内容信息的差别等先验知识,因此没有对任何情况都适用的全能方法。

  基于图像处理的自动调焦法的常用的聚焦评价函数的类型大致有:灰度梯度函数、信息学函数、频域函数、统计学函数等。

  灰度梯度函数

  这类函数主要利用对图像灰度的各种处理方法来表征图像清晰度。假设图像中某点(x,y)处的灰度值为g(x,y),图像的规模为M×N(M列、N行)个像素,则灰度梯度判别函数包括以下几种常见形式。

  1、灰度涨落变化函数

  这是一种判断图像灰度起伏程度的方法,其函数式为

 

  式中,g0是图像灰度平均值。

  2、灰度绝对变化函数

  该评价函数与灰度涨落变化函数比较类似,适于具有固定单一背景的图像对比。该函数式为

  

  式中,g(x0,y0)为某参考像素点(x0,y0)处的灰度值。

  3、梯度向量模方函数

  梯度向量模方函数是一个灰度变化梯度和的表达式,只选取了梯度标量数值信息作为灰度变化量描述,其函数式为

  [nextpage]

  4、梯度向量平方函数

  梯度向量平方函数与梯度向量模方函数思路相同,只是用梯度平方和作为图像灰度变化判断,其函数式为

 

  5、罗伯特(Robert)梯度函数

  该评价函数使用了被判断点及其外沿3个像素点灰度信息,其函数式为

  

  6、拉普拉斯(Laplace)函数梯度函数

  该评价函数使用了被判断点及其周围4个像素点的灰度信息,其函数式为

  7、二级梯度平方函数

  利用Sobel算子来估计图像在水平方向和垂直方向的梯度,为使图像边缘的梯度放大,对梯度进行平方运算

  

  式中,

  Gx(x,y)=[g(x+1,y-1)+2g(x+1,y)+g(x+1,y+1)]

  -[g(x-1,y-1)+2g(x-1,y)+g(x-1,y+1)]

  Gy(x,y)=[g(x-1,y+1)+2g(x,y+1)+g(x+1,y+1)]

  -[g(x-1,y-1)+2g(x,y-1)+g(x+1,y-1)]

  倍息学函数

  倍息学函数是目前研究比较成熟的只有图像信息熵函数。假设图像各处是灰度独立的,在不考虑像素几何位置的情况下,按信息学香农(Shannon)熵的定义,图像信息熵可写为

 [nextpage]

  式中,pi为像素某灰度值表征的信息出现的概率,一般,b=2,相应的单位是比特(bit),也可以取以e为底的对数,相应的单位是奈特(nat)。

  在大多数的计算中,灰度值的信息概率定义为该灰度值在灰度直方图中出现的概率。

  频域函数

  频域函数以付里叶变换为基础。高清晰度图像的主要特征是具有清晰的边缘和丰富的图像细节,而边缘的细节对应于图像付里叶变换的高频分量;离焦图像的模糊在频域上体现为高频成分的衰减。其函数可表示为

  

  式中,(X,Y)是图像在对应空间频域坐标中的变量,G(X,Y)是图像二维付里叶变换后的值, 是高通滤波的阈值,可以取值为0。

  此外,还有如高频分量法函数、小波变换方法等。

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

资讯是全球知名展览公司百科展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,资讯拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈
Baidu
map