指纹识别采集与匹配
众所周知,人的指纹具有唯一性和稳定性的特征,即每一个人的指纹是独一无二的,两者之间不存在相同的指纹,而且每个人的指纹是相当固定的,一般不会随年龄和健康状况的变化而改变,因此可以通过指纹识别出人的身份。目前,国内外的自动指纹识别系统很多,但其结构大同小异,一般包括指纹的采集与分类、指纹的细节匹配及指纹的压缩与存储。
1.指纹的采集与分类
这是自动指纹识别系统(afis)运作的第一个环节。通过光学或cmos指纹采集仪将活体指纹的图像录入系统,对图像进行分割处理,在保持有用指纹信息基本完整的前提下,剪去一些多余的图像信息,产生一个相对较小的指纹图,对该图进行增强处理减弱噪声,增强脊和谷的对比度,提高图像质量。然后提取图像的特征,生成方向数组,再通过指纹分析器,根据指纹的脊和谷流向,将其分为尖拱类、拱类、左环类、右环类及旋涡类等五种或更小的种类属别。指纹分类的主要目的是方便大容量指纹库的管理,减少搜索空间,加速指纹匹配过程。
2.指纹的采集
在指纹识别设备正常连接后,可以进行指纹的登记录入。在读者指纹的采集过程中,读者的指纹需要录入两次,第一次采集的指纹和第二次采集的指纹进行比对,如果成功系统将正常保存,并添加到指纹识别系统。
如果采集的指纹不合格,系统将给出声音提示。如果识别不合格,保存功能不能使用,需要重新采集。以对所采集的读者指纹信息在保存到数据库前进行双重质量控制。要判断采集指纹的质量,将第二次采集的指纹信息和第一次采集的指纹模板进行1:1的单一比对,以保证指纹的采集质量,避免违法、不合格指纹信息存入数据库。
3.指纹的细节匹配
这是自动指纹识别系统核心。一般采用的是biokey算法,此算法是一种快速、准确的1:1和1:n指纹识别算法,在使用biokey进行指纹识别时2000~6000枚指纹),不需要对指纹通过姓名、pin等预先分类就可以在1~5s以下测试都在pentiumiii900mhz128mb内存环境下进行)内轻松完成。
4.指纹的压缩和存储
为了节省存储空间,必须对指纹图像进行压缩。目前指纹图像数据压缩算法较常见的是jpeg、wsq及ezw等,采用biokey-wsq基于自适应的标量量化和小波分解的图像压缩算法,该算法用于指纹图像压缩时,可以尽量保持指纹细节特征点信息,解压缩后对提取指纹细节特征精度的影响较小。wsq算法在进行大压缩比率的指纹图像压缩时,还原解压后的指纹图像细节特征点的定位和有关信息保存的较好,对随后将要进行的指纹识别影响较小。
wsq压缩比为1:20或1:15,即一个指纹图像可以压缩到6~10k,这个压缩比例采用这种算法是非常合适的。这样既节省了存储空间,而且在解压后又不影响模板特征点的提取。将其用于指纹图像压缩,并考虑到指纹图像识别的需要,从尽量保持关键点信息的角度改进了该算法。