随着社会经济的发展、汽车数量急剧增加,对交通控制、安全管理、收费管理的要求也日益提高,运用电子信息技术实现安全、高效的智能交通成为交通管理的主要发展方向。车牌自动识别技术作为一种计算机视觉与模式识别技术,在智能交通领域已经得到广泛应用。
车牌识别工作原理
车牌识别是利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。技术的核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,最后组成车牌号码输出。
车辆检测部分通常采用地感线圈或雷达,某些车牌识别系统还具有通过视频图像判断是否有车的功能,称之为视频车辆检测。
由于道路上24小时都通车,车牌识别系统需要全天时、全天候工作,为保障夜间识别准确率,还会配备LED频闪灯或闪光灯来补光。
车辆检测:可采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式感知车辆的经过,并触发图像采集抓拍。
图像采集:通过高清摄像抓拍主机对通行车辆进行实时、不间断记录、采集。
预处理:噪声过滤、自动白平衡、自动曝光以及伽马校正、边缘增强、对比度调整等。
车牌定位:在经过图像预处理之后的灰度图像上进行行列扫描,确定车牌区域。
字符分割:在图像中定位出车牌区域后,通过灰度化、二值化等处理,精确定位字符区域,然后根据字符尺寸特征进行字符分割。
字符识别:对分割后的字符进行缩放、特征提取,与字符数据库模板中的标准字符表达形式进行匹配判别。
结果输出:将车牌识别的结果以文本格式输出。