1、验证:是把当事人的身份与正在发生的行为联系在一起,确认其合法性。这是安全防范系统的典型应用,把人的生物特征视作一把钥匙或一张卡。
验证系统因可对特征的输入加以更多的控制,系统的可靠性和稳定性好,也相对成熟,已广泛地应用于出入管理系统中。它的基本工作方式是把特征输入装置读取的特征与系统存贮的有限量的特征样本(这些样本代表了一定的授权)进行比对,来确定请求合法性。通常系统的存贮样本的数量不是很多,现场特征输入的条件又可以加以控制,所以,系统的识别率很高(误识率和误拒率很低)。由于生物特征来自人自身,不需要进行同一认证,具有极高的安全性,因此、适用于高安全性要求的场所,如贵重物品的库房、重要活动或要人访客的出入管理。
2、识别:对输入特征与存贮在数据库中的大量的参考进行比对,来确定目标的身份。这样的系统首先要建立一个海量的基础样本数据库,如各城市人口的指纹库等。对于人脸等生物特征,要求输入的环境与建库的环境具有足够的相关性,以保证输入特征与样本特征的可比性。所以,建立一个稍加控制的环境,以排除或限制影响特征采集不真实(失真、不完整、伪装)的各种因素是系统应用的必要条件。如边防检查系统设立专门的人员通道来采集出入境人员的面部特征;机场安检信息系统在验征台处摄取旅客的面部图像。
两者都是对个体身份的认证,都要求有一个限定的工作环境,这一点通常的视频监控系统是做不到的,而且,它们的工作目标也不是对人体的身份认证。所以,必须在验证与识别之间选择新的切入点。
图像内容分析成为智能监控的突破口就在于:它是在通常的视频监控的环境下(如3111工程所建的系统)实现上述的功能。它对现行系统是锦上添花的方式,不影响现行系统的运行和使用,逐步完善、增加系统功能实现安防系统的智能化。更重要的是,它不仅是提取图像的表面信息(生物特征),而是挖掘并表述图像承载的深层信息,通过对图像序列的分析和多源图像的综合得出预测性、趋势性的判断。而在技术上正是数字视频与特征识别安全防范两大箭头技术的交汇点。
安全科技是围绕打、防两个方面展开的,基础都是获得信息。事发后的信息是证据;事发前的信息是情报,具有预警的价值。视频监控技术要加强后者的研究,就是智能化的方向。技术的发展是循序渐进的,不会在一夜之间出现革命性的变化。但一个重大的事件带来的机遇、产生的推动力将会极大地激励和催化技术的进步。视频监控技术正处于这样的时期,我们应该抓住机遇,追求技术创新、把视频监控技术提高到一个崭新的阶段。