我国智能交通行业发展经历了80、90年代以信号控制技术为代表的起步期,2000年到2015年以视频分析技术为代表的成熟期,而当前阶段可以用智慧交通时代命名。在当前阶段行业并不以某一项技术为代表,AI技术、汽车电子标识技术、大数据分析技术、云技术、互联网技术、车路协同技术井喷式发展,各类交通大数据系统、城市大脑系统落地建设。
AIoT时代智能交通新需求
在新技术逐步成熟后行业面临的主要问题包括信息共享问题、多源异构数据融合、海量数据处理、大数据分析问题等等。为了解决这些问题,对智能交通体系的更新和完善,宏观上有三层需求:
在感知交互层上,多种技术成熟,新的智能交通体系需要融合各类交通相关系统,感知层同时存在视频监控系统、卡口电警系统、信号控制系统、浮点车系统等多源异构系统;
在数据层上,构建信息化系统的云支撑系统,同时多源异构系统以统一标准融合。这里就需要行业主管部门制定统一的信息共享标准,比如已经发布的《安全防范视频监控联网系统信息传输、交换、控制技术要求》、《公安视频图像信息应用系统》等;
在应用层上,基于云设施支撑系统,构建交通云应用系统,例如交通态势系统、交通信号优化系统、交通辅助决策系统等。
总体来看,人工智能和物联感知一方面改变了数据的获取方式(感知智能),传统市场获取的信息以视频和图片为主,智能感知方面以车牌为主,随着人工智能和物联感知技术的发展,可以更深层次的挖掘数据,智能感知车牌、车辆特征、车辆行为、人脸、人体、非机动车、交通信息,另一方面改变了数据的认知方式(认知智能),人、车、行为等多维数据的碰撞,让信息系统的认知更智能。
最终体现在细分领域的应用,一是对管理维度提升,传统的车辆违法管理、缉查布控将扩展到出行者管理,例如驾驶人管理、非机动车、行人管理等。二是管理层次的提升,借助多源数据分析提升交通分析评价能力,提高城市综合管理能力。例如更成熟的交通态势的分析以及辅助决策系统的加速发展,城市级停车业务的加速发展。
抢占智能交通市场制高点
现阶段的智能交通行业有很多机会点,每个企业都有自己擅长的领域,有适合企业自身的发展方向。企业投入的重点主要是源于行业、客户需求。对于当前的智能交通行业,一套完整的具有创新技术的解决方案更吸引客户。就比如前面提到的人车大数据系统,需要感知层具备边缘计算能力,也需要中心大数据分析能力,完善的体系架构、软件硬件支持缺一不可。
在市场竞争中,企业要取得制高点,必须在技术、产品、解决方案、服务等形成核心竞争力,仅就技术层面来讲,当前比较看重的是AI技术,AI技术是对传统技术从本质上进行转变,形成新的感知智能以及认知智能,我们都在讲数据结构化、大数据分析,都是跟AI紧密集合的。AI技术可以贯穿多个行业,贯穿信息系统各层次。不是提倡每个企业横向铺开,而是抓紧符合自身客户需求的关键AI技术,纵向挖掘业务,为客户提供有价值的产品或者解决方案。
智能交通未来趋势
数据是推动智能交通发展的基础,人、车、行为识别都是获取数据的工具,是感知智能的提升。感知是基础,从感知智能到认知智能,最终改变的是业务架构,达到更深层次的业务应用。
整个交通数据生态的组成因素有人、车、路、场站枢纽四大因素。当前已经可以通过固定式检测设备感知车号牌、车流量、车特征等信息。通过场站枢纽的视频监控、出入口车辆识别、车位检测设备获取车辆进出数据。随着车路协同、辅助驾驶、无人驾驶技术的提升,可通过车载智能终端感知车辆相关移动数据,包括位置、行为等。我们也可以通过互联网技术,以移动终端(手机)感知出行者信息。未来、随着技术的发展和成熟,以及政策的支持,这四类信息将被全面感知,形成人车路场协同,提高整体交通通行效率。
目前国内各地智慧城市建设的重点和发展方向各不相同。智能交通是智慧城市发展中的重要组成部分,而且是相对成熟的部分,智慧城市建设将大幅推动智能交通市场发展。而智慧城市建设带动的市场发展以分为两部分:一部分是沿海及部分重点城市的先进经验向三、四线城市复制,这部分市场份额较大,因为技术相对成熟,可复制性强;另一部分是一、二线城市进行新技术试点,比如城市大脑相关项目会越来越多。此类项目对传统企业、互联网企业、IT企业、政府都提出了新的要求,会加速企业技术融合转型。
(本文根据浙江大华技术股份有限公司智能交通产品线总监方羽采访整理)