为了更好的助力复工复产期间的疫情防控,虹软视觉开放平台推出了口罩相关的人脸识别相关算法,包含“口罩佩戴检测算法”和“戴口罩时的人脸识别算法”,全力支持合作伙伴和开发者研发相关“抗疫”应用落地。
在人脸识别领域中,佩戴口罩属于大面积人脸遮挡,一直以来都是公认难题,难点主要体现在:
第一,人脸识别算法主要依据人脸面部特征进行身份判定,佩戴口罩进行识别时,算法无法准确检测人脸位置、定位五官关键点,大大降低了识别效果。
第二,人脸识别算法使用的深度学习技术依赖海量的训练数据,短期内难以收集到大量佩戴口罩照片,并进行人工标注;
第三,人脸识别算法包含多重模块,佩戴口罩影响的不仅仅是人脸比对模块,还会影响到人脸检测、跟踪等多个模块,对整个系统带来很大的干扰影响。
基于原创技术积累,虹软视觉开放平台针对原有人脸识别算法模型进行了针对性升级,提升人脸可见区域权重,在局部特征增强方面设计了相应策略,如加强了对眼睛、眉毛等重点区域的识别,佩戴口罩下的人脸识别准确率达99.5%以上。
而在全新推出的“口罩佩戴检测算法”上,虹软视觉开放平台针对口罩种类丰富、佩戴位置多样等问题,在数据增强方面设计相应策略,提升了模型鲁棒性。该算法可有效识别是否规范佩戴口罩,如未佩戴口罩、错误佩戴口罩、用手或其他物体遮挡脸部等多种场景。复产企业、复课学校等可以利用该技术,及时提醒相关人员正确佩戴口罩,提升防控效率。