谷歌大脑及AI团队,在本周发布了一个叫EfficientDet(高效检测)的人工智能系统。这个系统,实现较少的计算,获得更高效的检测目标。
该系统的创建者表示,与YOLO或AmoebaNet等其他流行的检测模型相比,该系统与CPU或者GPU一起使用时,还能实现更快的性能。在进行另一项与目标检测相关的任务时,EfficientDet也取得了优异的性能。利用PASCAL可视化对象,训练数据集,从而进行语义分割实验。
据了解,EfficientDet是EfficientNet的更新版本,该版本是去年为Coral board单板计算机,提供的一系列高级对象检测模型。谷歌的工程师谭明星、庞若明和Quoc Le在去年秋天首次发表的一篇论文中详细阐述了EfficientDet,但在周日对论文(包括代码)进行了修改和更新。
EfficientDet的优化灵感来自于Tan和Le在EfficientNet上的原创作品。提出了骨干网和特征网(backbone and feature networks)的联合复合标度方法。其中,双向特征金字塔网络(BiFPN)作为特征网络,ImageNet预训练的特征网络作为骨干网络。
EfficientDet通过删除只有一个输入边的节点来优化跨尺度连接,从而创建一个更简单的双向网络。它还依赖于单级探测器范式,一种以效率和简单著称的对象探测器。
这是来自谷歌最新的目标检测的消息,其用于目标检测的谷歌云视觉系统,最近在其公开可用的API中,将男性和女性的标签删除。